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Abstract — The paper proposes a rigorous harmonic-
balance technique for the circuit-level simulation of complex
microwave systems consisting of many interconnected func-
tional blocks. The voltages at the interface ports between
building blocks are used as auxiliary unknowns, and are de-
termined simultaneously with the block state variables by a
Krylov-subspace inexact Newton iteration. This provides
exact results and allows large savings of both memory and
CPU time.

1. INTRODUCTION

The circuit-level simulation of complex microwave
systems by rigorous harmonic-balance (HB) methods is a
computationally intensive task even if efficient Krylov-
subspace techniques are adopted in the solution process.
Indeed, if realistic topologies are considered, even a con-
ventional quasi-periodic analysis under multitone excita-
tion may require several million nodal unknowns, and thus
days of CPU time, and physical memory in the gigabyte
range. If the system consists of several interconnected
functional blocks, a possible way out is to perform the
simulation with the aid of behavioral models of the indi-
vidual subsystems. These models are computationally fast,
but always rely upon some kind of approximation, such as
the assumptions of narrow-band signal spectra or unilateral
signal flow, that may result in significant losses of accu-
racy. The tradeoff can be improved either by resorting to
more sophisticated behavioral models [1], [2], or by en-
hancing the efficiency of system-oriented HB simulation.
In this paper we present a method of the second kind, that
can optimally exploit the block structure of the system to
be analysed. The basic idea is to introduce a set of auxil-
iary state variables (SV) consisting of the voltages at the
subsystem ports, which creates in the Jacobian matrix a
well-defined sparsity pattern. Such sparsity can be effec-
tively exploited in a hierarchical solution approach if ordi-
nary HB techniques are used [3], or in the simultaneous
solution for all the unknowns when the HB analysis is per-
formed by Krylov-subspace methods [4], as we propose in
this paper. We show that the overhead introduced by the
auxiliary unknowns is normally small, so that important
savings of both memory and CPU time are obtained, and

really huge simulation tasks may be brought within the
reach of ordinary workstations or even PC's. All the non-
linear interactions between subsystems are exactly ac-
counted for in the analysis, both in band and out of band,
and all the peculiar advantages of SV-based HB analysis
[5], [6] are fully retained by the new technique. In par-
ticular, an arbitrary number of linear subsystems of any
complexity may be included in the system without sub-
stantially affecting memory and CPU time requirements.

I1. EFFICIENT CIRCUIT-LEVEL SYSTEM ANALYSIS

Let us consider a microwave system resulting from the
interconnection of B nonlinear subsystems (blocks) which
only interact through the connecting ports. The b-th block
(1 <b <B) is subdivided into a linear and a nonlinear sub-
network interconnected through Ny, device ports. The lin-
ear subnetwork has a total of E, external ports, My, of
which are used for connection with other blocks, while the
remaining ones are connected with sources or loads. The
number of inter-block connecting ports is arbitrary, but
will be assumed to be small with respect to the total num-
ber of device ports. Voltages and currents at the b-th block
device ports will be stacked in two Ny-vectors vD(b)(t),
iD(b)(t)‘ The currents at the device ports are considered
positive when entering the nonlinear subnetwork. Under
the assumption of multitone excitation of the system, the
generic (k-th) intermodulation (IM) product of the exciting
fundamental frequencies will be denoted by Q, where k is
a vector of harmonic numbers. The Ny-vectors containing
the k-th voltage and current harmonics at the device ports
will be denoted by V™, I, ®. Similarly, the k-th (sca-
lar) harmonics of the voltage and current at the h-th exter-
nal connection port of the b-th block linear subnetwork (1
<h £ My) will be denoted by th(b), Ihk(b). The currents at
the external ports are considered positive when entering
the linear subnetwork.

After connecting the exciting sources to the respective
blocks, the b-th block linear subnetwork may be described
in terms of a (N + My) x (N}, + My) admittance matrix
and a (N, + M;) vector of equivalent Norton current
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sources. The admittance matrix at the generic IM product
Q will be denoted by

Ypp ™ (Qy) ' Ype® Q)

(1)
Yeo (@) | Yee® (@)

Y®@y) =

where the subscripts "D", "E" stand for "device ports”" and
"external ports", respectively. The linear subnetwork
equations for the b-th block at &y then take on the form

b
T = Ypp @ (@) Vi @ + Np®P () +

My
b
+2 Yoem ™ (@) Vi

m=1

M
b b
+2Y5Ehm( Q) Vi ®

m=1

(1< h<My)

where the N's are vectors of equivalent Norton current
sources at the ports, and the admittance symbols have the
following meanings:

Y () = m-th column of Ypg ()
YEpn (@) = h-th row of Yp®(Qp) )

Y g (@) = scalar entry of Ygg(Q)
belonging to the h-th row and to the m-th column

The nonlinear subnetwork (device) equations for the b-th
block will be cast in the parametric form [5]

®) (¢
vpP ()= u“”[x‘b)(t), CSU ,xd“”(t)}

dx® ¢
ip® @)= w® [x(b) (), —J, ..... ,xq® (t)]

where x® is an Ny-vector of SV pertaining to the block,
and xd(b) is an Ny-vector of time-delayed SV [5]. Let us
now introduce a state vector X' containing the real and
imaginary parts of all SV harmonics for the b-th block.

The voltages at the external connection ports of the blocks
ar¢ assigned the role of auxiliary SV, so that the vectors
X" and the harmonics V, ) (1 £m £ M) of the auxil-
iary SV represent the problem unknowns (1 <b < B).

At the device ports of the b-th subsystem the following
equations must be satisfied:

U OO )= v, ®
)
W, ®[x® =1, ®

where Uk(b), Wk(b) are the k-th harmonics of (4). By re-
placing (5) into the first of (2), the b-th subsystem HB
equations at £y may be written in the form

Yoo (@) U, PO ]+ w, O [x®]+ N, ® () +

M,
+3 Ypen® @) Vi ® = 0

m=1
(6)

Note that the first row of (6) represents the vector of com-
plex HB errors that should be equated to zero in order to
perform a separate HB analysis of the b-th block (with the
connecting ports short-circuited). In order to complete the
set of system equations, (6) must be complemented by the
connection equations. As an example, if the h-th port of
the p-th block is connected with the r-th port of the g-th
block, the corresponding connection equations become

th ® _ Vrk @ _ 0
Vk )

Ihk(p) + Irk(q) =0
The total number of connection equations (7) will be de-
noted by 2N¢. Combining the second of (2) with the sec-

ond of (7) generates an additional set of HB equations of
the form

Yeon® @) U P [KP ] + Y50, @ @) U, @[x @] +

M, M,
+ Y Yermn P (@) Vi P + Z YEErj(q) () Vi @+
m=] =1

+ Ny P @)+ N, Q@)= 0
®

0-7803-6540-2/01/$10.00 (C) 2001 IEEE



The nonlinear solving system is the set of equations (6),
(8), for 1 £ b < B and for all combinations of h, p, r, q ap-
pearing in (7). The Jacobian matrix of such system may be
partitioned as follows:

J=[JBB JBCj| (9)
Jee 'Jcc

where the subscripts “B”, “C”, are associated with the HB
equations and the SV harmonics pertaining to the nonlin-
ear blocks and to the inter-block connections, respectively.
The strucure of the Jacobian submatrices will now be ex-
amined in some detail. Due to (6), Jgg is block-diagonal,
and may be written in the form

Jpp = diag[J(l) JPIO ’J(B)] (10)

where J® (1 £ b £ B) is the (dense) Jacobian matrix of the
ordinary HB system for the b-th block, when such block is
separately analysed with all connection ports short-
circuited. Jg is generated by the linear part (second row)
of the HB equations (6), so that its submatrices are real
and imaginary parts of the column vectors YDEm(b Q.
Jpc is thus sparse, with only 2M, nonzero elements per
row. Jog and Joc are generated by the connection equa-
tions (7). The N rows of J g originating from the first of
(7) are obviously zero, while the corresponding rows of
Jcc have only two nonzero entries equal to £1. The re-
maining part of Jog is generated by the nonlinear part
(i.e., the first row) of (8), and may thus be partitioned into
submatrices of the general form

o]

aFfx,®] (11)
o, ]
aF[xs(")]

Re[YEDm(b) (Qy )]

+ Im[YEDm("’ Q) )]

where Xs(b) is the vector of the s-th harmonics of x(b)(t),
and the operator F[+] may denote either the real or the
imaginary part, in any combination. A row of this section
of Jp associated with the p-th and g-th blocks has (N +
N )(2P + 1) nonzero entries, where P is the number of
posxtlve IM products taken into account in the HB analy-
sis. Finally, the remaining N rows of Joc are generated
by the linear part (i.e., the second row) of (8), so that their
entries are real and imaginary parts of the admittance pa-
rameters YEEmna’ (2. I is also sparse, with only 2(M

+ Mq) nonzero elements per row.

Let us now assume that the nonlinear system is solved
by a Krylov-subspace technique. With this class of meth-
ods, the bulk of the CPU time is spent in the multiplication
of the Jacobian matrix by a sequence of real vectors [4]. It
is thus obvious that the structure (9) of the Jacobian matrix
with the above discussed properties is particularly well
suited for this solution approach, because the multiplica-
tion process can take full advantage of the fixed sparsity
pattern of the Jacobian sub-matrices. In particular, if the
number of auxiliary SV is relatively small (say, 10% of the
total or less), which is often the case in practice, the domi-
nant contribution to the multiplication time is due to Jgp,
and the overhead due to the remaining submatrices is
small.

ITI. A PERFORMANCE BENCHMARK

Let us consider a typical single-conversion receiver
front-end, whose functional diagram in terms of intercon-
nected blocks is given in fig. 1. The circuit basically con-
sists of two doubly balanced mixers arranged in an image-
rejection configuration, a local oscillator, coupling net-
works, amplifiers, and filters. The band of operation is 935
- 960 MHz and the IF is 90 MHz. The circuit-level de-
scription of the front-end is very detailed, and includes
many (linear) parasitic components. The total number of
device ports is np = 208, and the total number of nodes is
1745. A two-tone IM analysis of the front-end is carried
out with 0 dBm of LO power and an RF excitation con-
sisting of two tones of equal amplitudes. The RF power is
swept from -50 to 0 dBm per tone (the latter correspond-
ing to a gain compression of about 36 dB). Such high sig-
nal levels are considered in order to give a clear account of
the excellent power handling capabilities of the analysis
algorithm. 6 LO harmonics and IM products of the two RF
signals up to the 7th order are taken into account in the
analysis, for a total of 734 positive frequencies and
2,563,405 nodal unknowns. If the system is treated as a
whole, the CPU time is about 19,600 seconds per power
point, and the memory occupation is about 1,870 MB on a
SUN Enterprise 450 workstation. The front-end is then
subdivided into 9 interconnected blocks (5 three-ports and
4 two-ports) in the way shown in fig. 1, which requires the
introduction of 20 auxiliary SV. With the algorithm dis-
cussed in this paper, the CPU time for the same analysis is
reduced to about 4,800 seconds per power point, and the
total memory occupation to about 620 MB on the same
workstation. The numerical results are shown in fig. 2, and
are strictly identical in both cases.

The speed and memory advantage quickly increase with
the number of nonlinear devices contained in the system.
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Spectral components at the front-end output
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