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Abstract — The paper proposes a rigorous harmonic-
balance technique for the circuit-level simulation of complex
microwave systems consisting of many interconnected func-
tional blocks. The voltages at the interface ports between
building blocks are used as auxiliary unknowns, and are de-
termined simultaneously with the block state variables by a
Krylov-subspace inexact Newton iteration. This provides
exact results and allows large savings of both memory and
CPU time.

I. INTRODUCTION

The circuit-level simulation of complex microwave

systems by rigorous harmonic-balance (HB) methods is a

computationally intensive task even if efficient Krylov-
subspace techniques are adopted in the solution process.

Indeed, if realistic topologies are considered, even a con-

ventional quasi-periodic analysis under multitone excita-

tion may require several million nodal unknowns, and thus

days of CPU time, and physical memory in the gigabyte

range. If the system consists of several interconnected

functional blocks, a possible way out is to perform the

simulation with the aid of behavioral models of the indi-
vidual subsystems. These models are computationally fast,

but always rely upon some kind of approximation, such as

the assumptions of narrow-band signal spectra or unilateral

signal flow, that may result in significant losses of accu-
racy. The tradeoff can be improved either by resorting to

more sophisticated behavioral models [1], [2], or by en-

hancing the efficiency of system-oriented HB simulation.

In this paper we present a method of the second kind, that

can optimally exploit the block structure of the system to

be analysed. The basic idea is to introduce a set of auxil-

iary state variables (SV) consisting of the voltages at the

subsystem ports, which creates in the Jacobian matrix a
well-defined sparsity pattern. Such sparsity can be effec-

tively exploited in a hierarchical solution approach if ordi-

nary HB techniques are used [3], or in the simultaneous

solution for all the unknowns when the HB analysis is per-
formed by Krylov-subspace methods [4], as we propose in

this paper. We show that the overhead introduced by the
auxiliary unknowns is normally small, so that important

savings of both memory and CPU time are obtained, and

really huge simulation tasks may be brought within the

reach of ordinary workstations or even PC’S. All the non-

linear interactions between subsystems are exactly ac-

counted for in the analysis, both in band and out of band,
and all the peculiar advantages of SV-based HB analysis

[5], [6] are fully retained by the new technique. In par-

ticular, an arbitrary number of linear subsystems of any

complexity may be included in the system without sub-

stantially affecting memory and CPU time requirements.

II. EFFICIENTCIRCUIT-LEVEL SYSTEMANALYSIS

Let us consider a microwave system resulting from the

interconnection of B nonlinear subsystems (blocks) which

only interact through the connecting ports. The b-th block
(1 < b <B) is subdivided into a linear and a nonlinear sub-

network interconnected through Nb device ports. The lin-
ear subnetwork has a total of Eb external ports, Mb of

which are used for connection with other blocks, while the

remaining ones are connected with sources or loads. The

number of inter-block connecting ports is arbitrary, but

will be assumed to be small with respect to the total num-

ber of device ports. Voltages and currents at the b-th block

device ports will be stacked in two Nb-vectors vD@)(t),
iD(b)(t). The currents at the device ports are considered

positive when entering the nonlinear subnetwork. Under
the assumption of multitone excitation of the system, the

generic (k-th) intermodulation (IM) product of the exciting

fundamental tlequencies will be denoted by ~k where k is

a vector of harmonic numbers. The Nb-vectors containing

the k-th voltage and current harmonics at the device ports

‘) Similarly, the k-th (sca-will be denoted by VDk@), IDk .

lar) harmonics of the voltage and current at the h-th exter-

nal connection port of the b-th block linear subnetwork (1

‘). The currents ats hs Mb) will be denoted by Vhko)> Ihk

the external ports are considered positive when entering
the linear subnetwork,

After connecting the exciting sources to the respective

blocks, the b-th block linear subnetwork may be described
in terms of a (Nb + Mb) x (Nb + Mb) admittance matrix

and a @b + Mb) VeCtOr of fX@dt2nt Norton current
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sources. The admittance matrix at the generic IM product

flk will be denoted by

[

YDD(b) (!i2~ ) YDE(b) (L-2~)
yw (Qk ) =

1

(1)

YED(b) (Q~ ) YEE(b) (S2~)

where the subscripts “D “, “E” stand for “device ports” and

“external ports”, respectively. The linear subnetwork

equations for the b-th block at Qk then take on the form

-I ~k
(b) = yDD(b) (~k ) vDk ‘b) + ND(b)(Qk) +

Mb

i-
x yDEIII(b) (% ) Vmk

(b)

~=1

(2)

Ihk ‘b) + Nh(b)(Qk)(b) = YEDh(b) (~k ) vDk ~

+
2 ‘EEhm ‘b) (~k ) Vmk

(b)

~=1

(l<h <Mb)

where the N’s are vectors of equivalent Norton current

sources at the ports, and the admittance symbols have the

following meanings:

Y ~Em@)(Qk) = m-th column of YDE@)(Qk)

y~~ho)(~k) = h-th l_OW Of yED@)(~k) (3)

YEEhm(b)(f2k) = scalar entry of YEE@)(Qk)

belonging to the h-th row and to the m-th column

The nonlinear subnetwork (device) equations for the b-th

block will be cast in the parametric form [5]

(b)(t) = ~
[

dx(b) (t)
vD @) x@) (t), ~ xd (b) (t), ..... ,

1

[

‘(4)

iD (b) (t) = ~ ,b)Lx,b) (t), ‘x(b)(t), .. ... . x$b)(t)]

dt

where x@) is an Nb-vector of SV pertaining to the block,

and xd‘b) is an Nb-vector of time-delayed SV [5]. Let us
now introduce a state vector X@) containing the real and

imaginary parts of all SV harmonics for the b-th block.

The voltages at the external connection ports of the blocks

are assigned the role of auxiliary SV, so that the vectors

‘)(1 S m < Mb) of the auxil-X@) and the harmonics Vmk

iary SV represent the problem unknowns (1 < b < B).

At the device ports of the b-th subsystem the following

equations must be satisfied:

Uk(b) [x(b)]= vDk(V

(5)

wk(b) [X(b)]= IDk(b)

where U#’), Wk ‘b) are the k-th harmonics of (4). By re-

placing (5) into the first of (2), the b-th subsystem HB
equations at Qk maybe written in the form

Y ‘b)(f)k)Uk (b)[x(b)]+@OIX@)]+ ND(b)(Qk)+
DD

Mb

+
z ‘DEm(b) (Qk ) ‘mk

(b) = ~

~=]

(6)

Note that the first row of(6) represents the vector of com-

plex HB errors that should be equated to zero in order to

perform a separate HB analysis of the b-th block (with the

connecting ports short-circuited). In order to complete the

set of system equations, (6) must be complemented by the

connection equations. As an example, if the h-th port of
the p-th block is connected with the r-th port of the q-th

block, the corresponding connection equations become

The total number of connection equations (7) will be de-

noted by 2NC. Combining the second of (2) with the sec-

ond of (7) generates an additional set of HB equations of

the form

y~r)b(p)(~k ) U k
(P) [x(p) ] + yEDr(q) (~k ) Uk (q) [x(q) ] +

Mp

+ x zy~~~(p)(~k)Vmk(p)+‘qy~~rj(q)(~k) Vjk(q)+
~=1 j=l

+ Nh(p)(f)k)+Nr(q)(~k)=O

(8)
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The nonlinear solving system is the set of equations (6),

(8), for 1 S b < B and for all combinations of h, p, r, q ap-

pearing in (7). The Jacobian matrix of such system maybe

partitioned as follows:

[-t-l~=JBB J~c

JCB Jcc
(9)

where the subscripts “B”, “C”, are associated with the HB
equations and the SV harmonics pertaining to the nonlin-

ear blocks and to the inter-block connections, respectively.

The strncure of the Jacobian submatrices will now be ex-

amined in some detail. Due to (6), JBB h block-diagonal,
and may be written in the form

[J~~ = diag J(1),J(2), J(3), ........ .J(B)]
(lo)

where Jo) (1 < b <B) is the (dense) Jacobian matrix of the

ordinary HB system for the b-th block, when such block is

separately analysed with all connection ports short-

circuited. JBC is generatedby the linear part (second row)

of the HB equations (6), so that its submatrices are real

and imaginary parts of the cohmm vectors YDE~(b)(Qk).
JBC is thus sparse, with only 2Mb nonzero elements Per

row. JCB and Jcc are generatedby the connection ewa-
tions (7), ‘fbe Nc rows of JCB originating from the firSt of

(7) are obviously zero, while the corresponding rows of
Jcc have only two nonzero entries equal to *1. The re-

maining part of JCB is generated by the nonline~ part

(i.e., the first row) of(8), and may thus be partitioned into
submatrices of the general form

(11)
.

where X?) “1s the vector of the s-th harmonics of x@)(t),

and the operator F[*] may denote either the real or the
imaginary part, in any combination. A row of this section

of JCB associated with the p-th and q-th blocks has (NP +

Nq)(2P + 1) nonzero entries, where P is the number of
positive IM products taken into account in the HB analy-

sis. Finally, the remaining Nc rows of Jcc are generated
by the linear part (i.e., the second row) of(8), so that their
entries are real and imaginary parts of the admittance pa-

rameters Y~~mn@)(~k). Jcc is also sparse, with onlY 2(MP

+ Mq) nonzero elements per row.

Let us now assume that the nonlinear system is solved

by a Krylov-subspace technique. With this class of meth-

ods, the bulk of the CPU time is spent in the multiplication
of the Jacobian matrix by a sequence of real vectors [4]. It

is thus obvious that the structure (9) of the Jacobian matrix

with the above discussed properties is particularly well

suited for this solution approach, because the multiplica-

tion process can take fill advantage of the fixed sparsity

pattern of the Jacobian sub-matrices. In particular, if the

number of auxiliary SV is relatively small (say, 10°/0of the

total or less), which is often the case in practice, the domi-
nant contribution to the multiplication time is due to JBB,

and the overhead due to the remaining submatrices is

small.

III. A PERFORMANCEBENCHMARK

Let us consider a typical single-conversion receiver

front-end, whose fictional diagram in terms of intercon-

nected blocks is given in fig. 1. The circuit basically con-

sists of two doubly balanced mixers arranged in an image-

rejection configuration, a local oscillator, coupling net-

works, amplifiers, and filters. The band of operation is 935

-960 MHz and the IF is 90 MHz. The circuit-level de-
scription of the front-end is very detailed, and includes

many (linear) parasitic components. The total number of

device ports is nD = 208, and the total number of nodes is

1745. A two-tone IM analysis of the ffont-end is carried

out with O dBm of LO power and an RF excitation con-

sisting of two tones of equal amplitudes. The RF power is

swept from -50 to O dBm per tone (the latter correspond-

ing to a gain compression of about 36 dB). Such high sig-

nal levels are considered in order to give a clear account of

the excellent power handling capabilities of the analysis

algorithm. 6 LO harmonics and IM products of the two RF

signals up to the 7th order are taken into account in the

analysis, for a total of 734 positive frequencies and

2,563,405 nodal unknowns. If the system is treated as a

whole, the CPU time is about 19,600 seconds per power

point, and the memory occupation is about 1,870 MB on a
SUN Enterprise 450 workstation. The front-end is then

subdivided into 9 interconnected blocks (5 three-ports and
4 two-ports) in the way shown in fig. 1, which requires the
introduction of 20 auxiliary SV. With the algorithm dis-

cussed in this paper, the CPU time for the same analysis is

reduced to about 4,800 seconds per power point, and the
total memory occupation to about 620 MB on the same

workstation. The numerical results are shown in fig. 2, and

are strictly identical in both cases.
The speed and memory advantage quickly increase with

the number of nonlinear devices contained in the system.
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PSF = RF reselection filter DBM = Doubly-balanced mixer

LNA = Low-noise amplifier
RF input

LOA = LO am-plifier

IPD = In-phase power divider IFP = IF preamplifier

RFP = RF preamplifier IFF = IF filter

LQC = Lumped quadrature coupler IFA = IF amplifier

Fig. 1. Schematic topology of a microwave front-end
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Fig. 2. Spectral components at the front-end output
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